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Specification of Finite Effect Algebras†
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We study and relate five basic methods for specifying or describing a finite effect
algebra, indicate some computational algorithms for dealing with effect algebras
so specified, and mention in passing some open questions that await solution.

1. INTRODUCTION

The contemporary quantum theory of measurement employs measures
that take values in the standard effect algebra of self-adjoint Hilbert space
operators between zero and the identity [1]. The infinite-dimensional standard
effect algebras in which these positive-operator-valued (POV) measures
assume their values harber many structural mysteries. Small finite effect
algebras are amenable to exhaustive study with the aid of computer software,
and the results of these studies can cast considerable light on the structure
of the standard effect algebra and thus on the theory of POV-measures.

The evolving discipline of computational quantum logic is devoted to
the development of efficient algorithms for dealing with finite effect algebras.
However, before an effect algebra L can be processed by computer software,
it is necessary to give an explicit specification or description of L. Further-
more, one of the tasks of computational quantum logic is to develop efficient
algorithms for covering one description of L (e.g., in terms of multiplicity
vectors) to a more perspicuous description (e.g., as an interval in a partially
ordered Abelian group).
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In this largely expository paper we focus on the question of how finite
effect algebras can be specified or described. We assume that the reader is
familiar with the definition and the basic theory of effect algebras [2–8]. To
keep the length of the paper within bounds, we omit all proofs. Omitted
proofs are either straightforward or can be found in the cited literature.

There are perhaps five basic (not necessarily mutually exclusive) meth-
ods for specifying a particular effect algebra L: (1) intrinsically, (2) by an
edge-labeled Hasse diagram, (3) by multiplicity vectors, (4) as subset of an
Abelian group, and (5) as an interval in a partially ordered Abelian group.
We discuss methods 3, 4, and 5, respectively, in Sections 2, 3, and 5 below.
In Section 4 we review the notion of the universal group for L. In the course
of our discussion, we mention a number of intriguing open questions. Here
we briefly consider methods 1 and 2.

By an intrinsic specification of L (method 1 above), we mean a descrip-
tion of L within or in terms of a conventional mathematical structure such
as an operator algebra, a measure space, a group, or a combinatorial design.
For example, a standard effect algebra is described as a certain system of
operators on a Hilbert space. Another example would be the set of all subsets
of the unit interval [0, 1] that have rational Lebesgue measure. Note that
neither of these descriptions is particularly amenable to processing by com-
puter software.

Although an effect algebra L is a partially ordered set (poset), its algebraic
structure is not determined by its poset structure. Even the four-element
Boolean algebra, regarded as a poset, can be organized into an effect algebra
in two different ways. Thus, the usual Hasse diagram does not suffice to
specify the algebraic structure of L.

A complete description of a finite effect algebra L can be secured by
labeling the edges of its Hasse diagram as follows (method 2 above): A rising
line segment from vertex p to vertex q in the Hasse diagram indicates that
p, q P L and that q covers p. The fact that q covers p means that there is a
uniquely determined atom a P L such that p ' a and p % a 5 q. By labeling
the line segment from p up to q by the atom a, this information is incorporated
into the diagram. By so labeling all of the line segments (edges), complete
information about the algebraic structure of L is encoded into the edge-
labeled Hasse diagram. In studying a finite effect algebra L, one is rarely in
possession at the outset of the complete edge-labeled Hasse diagram. Rather,
the information in the diagram is usually part of the desired output of a
computer algorithm.

In what follows, we turn our attention to the remaining methods (3–5)
for specifying or describing a finite effect algebra. We denote the system of
integers by Z and we define Z+ :5 {z P Z.0 # z}. (The symbol :5 means
equals by definition.) If n is a positive integer, we understand that
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Zn :5 {(z1, z2, . . . , zn).zi P Z for i 5 1, 2, . . . , n}

is organized into a partially ordered Abelian group under coordinatewise
addition with

(Z+)n :5 {(z1, z2, . . . , zn).zi P Z+ for i 5 1, 2, . . . , n}

as the positive cone. Vectors in Zn are denoted by lowercase boldface letters
and the standard (Kronecker) basis vectors d1,d2, . . . , dn P (Z )n are
defined by

di :5 (0, 0, . . . , 0, 1, 0, . . . , 0)

with the 1 in the ith coordinate for i 5 1, 2, . . . , n.
For the remainder of the paper, we assume that L is a finite effect algebra

with zero 0, unit u Þ 0, and orthosupplementation p ° p8. Also, the atoms
in L are denoted by a1, a2, . . . , an.

2. MULTIPLICITY VECTORS

Every element p P L can be written as an orthocombination p 5
%n

i51 pi ai of the atoms a1, a2, . . . , an with coefficients p1, p2, . . . , pn P Z+.
In particular, the unit u can be so written.

Definition 2.1. A multiplicity vector for L with respect to the atoms a1,
a2, . . . , an is a vector t 5 (t1, t2, . . . , tn) P (Z+)n such that u 5 %n

i51 ti ai.
The set consisting of all such multiplicity vectors is denoted by T # (Z+)n

and is called the total set of multiplicity vectors for L with respect to a1, a2,
. . . , an.

The set T is necessarily finite, and the entire structure of the effect
algebra L, up to an isomorphism, is encoded in T. Thus, L is specified by
the finite set T of vectors over (Z+)n. The structure of L can be extracted
from T by proceeding as follows.

Definition 2.2. Let T↓ :5 {p P (Z+)n.p # t for some t P T}.
For p 5 ( p1, p2, . . . , pn) P T↓, define s(p) P L by

s(p) :5 %n
i51 pi ai

Let + :5 {s21( p).p P L}. The elements of + are called perspectivity classes
in T↓.

Define i: L → + by i( p) :5 s21( p) for all p P L.
Evidently the mapping s: T↓ → L is a surjection, + is a partition of

T↓ into equivalence classes, and i: L → + is a bijection. Using the bijection
i, we can and do organize + into an effect algebra (+, 0, T, %) with zero
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0 5 s21(0) and unit T 5 s21(u) in such a way that i: L → + is an effect-
algebra isomorphism.

According to the following theorem, the structure of the effect algebra
+, hence also the structure of L, can be assessed using only the information
implicit in the set T.

Theorem 2.3. If p, q P T↓, then p and q belong to the same perspectivity
class in + iff there is a vector r P T↓ such that p 1 r P T and q 1 r P
T. If P, Q P +, then P ' Q iff there exist p P P, q P Q with p 1 q P T↓,
in which case p 1 q P T↓ holds for all p P P and all q P Q. If P, Q P
+ with P ' Q, then

P % Q 5 {p 1 q.p P P, q P Q}

If p P P P +, then the orthosupplement of P in + is

P8 5 {t 2 p.p # t and t P T}

The atoms in +, given by Ai :5 i(ai) for i 5 1, 2, . . . , n, are determined
by the fact that di P Ai. In fact, Ai 5 {di}.

Theorem 2.3 can be used as the basis for an algorithm for finding the
structure, up to an isomorphism, of a finite effect algebra L in terms of its
total set T of multiplicity vectors. See Section 6 of ref. 4 for the details.

Example 2.4. The eight-element effect algebra

F8 5 {0, u, a, b, c, a8, b8, c8}

has three atoms a, b, c and three coatoms a8, b8, c8 and the total set of
multiplicity vectors for F8 is

T 5 {(2, 0, 1), (1, 2, 0)}

In other words, there are two and only two ways to write the unit u as an
orthocombination of the atoms, namely

2a % c 5 u and a % 2b 5 u

Evidently, T↓ consists of the 10 vectors

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)

(1, 1, 0), (0, 2, 0), (2, 0, 0), (2, 0, 1), (1, 2, 0)

There are eight perspectivity classes in T↓, and they correspond to the ele-
ments of F8 as follows:

i(0) 5 {(0, 0, 0)}, i(u) 5 T 5 {(2, 0, 1), (1, 2, 0)}

i(a) 5 {(1, 0, 0)}, i(b) 5 {(0, 1, 0)},
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i(c) 5 {(0, 0, 1)}, i(a8) 5 {(1, 0, 1), (0, 2, 0)},

i(b8) 5 {(1, 1, 0)}, i(c8) 5 {(2, 0, 0)}

Orthogonalities and orthosums can be deduced from this information. For
instance, (1, 0, 0) P i(a), (0, 1, 0) P i(b), and (1, 0, 0) 1 (0, 1, 0) 5 (1, 1,
0) P i(b8), so a ' b with a % b 5 b8. Also, (0, 1, 0) P i(b), (0, 0, 1) P
i(c), and (0, 1, 0) 1 (0, 0, 1) 5 (0, 1, 1) ¸ T↓, whence b '⁄ c, and so on.
Proceeding in this way, one can extract the necessary information to construct
the edge-labeled Hasse diagram for F8. n

In the sequel, we use F8 as a running example to illustrate various
methods for specifying a finite effect algebra. The Hasse diagram and the
edge-labeled Hasse diagram for F8 are given in Fig. 1.

3. EFFECT GROUPS AND GROUP REALIZATIONS

In what follows, all Abelian groups will be written additively. If H is
an Abelian group and E # H, we write ^E & for the subgroup of H generated
by E.

Definition 3.1. An effect group is a triple (H, E, v) consisting of an
Abelian group H, a subset E # H such that ^E & 5 H, and an element v P
E such that for all a, b, c P E:

(i) a 1 b, a 1 b 1 c P E ⇒ b 1 c P E.
(ii) v 2 a P E.

(iii) v 1 a P E ⇒ a 5 0.

Theorem 3.2. Let (H, E, v) be an effect group. Then E can be organized
into an effect algebra (E, 0, v, %) by defining a % b for a, b P E iff a 1 b
P E, in which case a % b :5 a 1 b.

Fig. 1. The usual Hasse diagram for F8 and the edge-labeled Hasse diagram for F8.
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The condition in Definition 3.1 that ^E & 5 H just ensures that there are
no elements in H that are “algebraically irrelevant” to the structure of the
effect algebra E. If all the other conditions in Definition 3.1 hold, then this
condition can be enforced simply by replacing H by ^E &.

Definition 3.3. An effect algebra L is said to have a group realization
(H, E, v) iff (H, E, v) is an effect group and L is isomorphic to the effect
algebra E.

If L has a group realization, then (up to an isomorphism) L can be
specified as a subset of an Abelian group H and the algebraic structure of
L is determined by the structure of H. The following example shows that the
effect algebra F8 in Example 2.4 has a group realization. The source of this
particular realization is addressed in Example 3.6 below.

Example 3.4. Let E be the set consisting of the eight vectors

(0, 0), (2, 0), (1, 1), (0, 2), (4, 0), (3, 1), (2, 2), (4, 2)

in the group Z2 and let v :5 (4, 2). Then (Z2, E, v) is an effect group.
Organize E into an effect algebra as in Theorem 3.2. Then the effect algebra
F8 is isomorphic to E under the mapping 0 ° (0, 0), a ° (2, 0), b ° (1,
1), c ° (0, 2), a8 ° (2, 2), b8 ° (3, 1), c8 ° (4, 0), and u ° v 5 (4, 2).

If [0, 1] denotes the closed unit interval in the additive Abelian group
R of real numbers, then (R, [0, 1], 1) is an effect group, and [0, 1] is thus
organized into an effect algebra called the standard scale algebra. A morphism
v: L ° [0, 1] is the same thing as a probability measure (or state) on L.
Since L is finite, the set V(L) of all probability measures on L forms a convex
polytope. See Section 8 of ref. 6 for a sketch of an algorithm for calculating
the set ­eV(L) of all extreme points ( pure states) of V(L) from the set T of
multiplicity vectors for L. If v P ­eV(L), then v( p) is a rational number for
all p P L.

Theorem 3.5. Suppose V(L) is a full (i.e., order-determining) set of
probability measures on L, let ­eV(L) 5 {v1, v2, . . . , vk}, and let a1, a2,
. . . , an be atoms in L. For each i 5 1, 2, . . . , k, write the rational numbers
vi (a1), vi (a2), . . . , vi (an) in reduced form, let vi be the least common multiple
of the resulting denominators, and define ei: L ° Z+ by ei (p) :5 vivi (p) for
all p P L. Let H :5 Zk, define h: L ° H by h( p) :5 (e1( p), e2( p), . . . , ek

( p)) for all p P L, let E :5 h(L), and let v :5 (v1, v2, . . . , vk). Then (H, E,
v) is an effect group, h is an H-valued measure on L, and h: L → E is an
effect-algebra isomorphism.

As a consequence of Theorem 3.5, if L admits a full set of probability
measures, then L has a group realization.
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Example 3.6. A computer calculation implementing the algorithm given
in ref. 6 shows that ­e(F8) 5 {v1, v2} with

v1(a) 5 1/2, v1(b) 5 1/4, v1(c) 5 0

v2(a) 5 0, v2(b) 5 1/2, v2(c)5 1

V(F8) is full, and in Theorem 3.5, k 5 2, v1 5 4, v2 5 2, H 5 Z2,

h(a) 5 (2, 0), h(b) 5 (1, 1), h(c) 5 (0, 2), v 5 (4, 2)

Indeed, the effect group (H, E, v) is the effect group in Example 3.4 and the
isomorphism h: F8 → E is the isomorphism in that example. n

4. THE UNIVERSAL GROUP

In general, group realizations are not unique. However, if L admits a
group realization, it admits a special group realization (G, g(L), g(u)) from
which all the others can be derived in the sense that, if (H, E, v) is a group
realization of L, there is a uniquely determined group epimorphism n: G →
H such that n + g: L → E is an effect-algebra isomorphism. In this section
we review the construction of the group G and the G-valued measure g: L →
G. We maintain the standing notation of Section 2 and we choose and fix a
multiplicity vector s P T.

Definition 4.1. Let ^T 2 s& be the subgroup of Zn generated by all
vectors of the form t 2 s for t P T, let G be an Abelian group, and let j:
Zn → G be a surjective group homomorphism with kernel ^T 2 s&.

It is clear that ker(j) 5 ^T 2 s& is independent of the choice of the
vector s P T and G is isomorphic to the quotient group Zn/^T 2 s&. If desired,
one can take G 5 Zn/^T 2 s& and let j: Zn → Zn/^T 2 s& be the natural
epimorphism. In any case, we shall refer to j: Zn → G as the canonical
epimorphism.

Theorem 4.2. There is a unique mapping g: L → G such that, for all
p P L and all p P i( p), g( p) 5 j(p). Further, g has the following properties:

(i) g ? L → G is a group-valued measure on the effect algebra L.
(ii) g(L) generates the group G.

(iii) If K is any Abelian group and f : L → K is a K-valued measure
on L, there is a unique group homomorphism f*: G → K such
that f 5 f* + g.

Because of property (iii) in Theorem 4.2, the pair (G, g) is called a
universal group for the effect algebra L. Since (G, g) is uniquely determined
by L up to an isomorphism, we often allow ourselves to refer to it as the
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universal group for L. Weber [11] and Navara [9] have given examples of
finite orthomodular lattices with universal group G 5 {0}.

The group G and the G-valued measure g can be found by standard
algorithms for finitely generated Abelian groups and G can be realized as a
Cartesian product G 5 Zr 3 J of a free Abelian group Zr of finite rank r
and a finite group J that is a Cartesian product of cyclic groups. The factor
J is called the torsion subgroup of G and G is said to be torsion-free iff J 5 {0}.

Definition 4.3. If (G, g) is the universal group for the effect algebra L
and G is isomorphic to Zr 3 J, where J is a finite group, then r is called
the rank of L. We say that L is torsion-free iff J 5 {0}.

There are many open questions centered around the question of which
effect algebras are torsion-free and which are not. In general, it appears that
the torsion-free effect algebras are considerably “better behaved” than the
effect algebras with torsion. We do not know an example of an effect algebra
with full set of probability measures that is not torsion-free.

Example 4.4. For F8 (Example 2.4) the universal group is (Z2, g) with

g(0) 5 (0, 0), g(u) 5 (1, 1)

g(a) 5 (1, 21), g(b) 5(0, 1), g(c) 5 (21, 3)

g(a8) 5 (0, 2), g(b8) 5(1, 0), g(c8) 5 (2, 22)

Thus, F8 is torsion-free with rank 2.

In Example 4.4, note that g: F8 → G is an injection. More generally, if
(G, g) is a universal group for L, then g is an injection iff there are sufficiently
many group-valued measures on L to separate the elements of L.

If (G, g) is a universal group for L and l: G → G is an automorphism
of G, then (G, l + g) is again a universal group of L. An automorphism l
of the free Abelian group Zr of rank r determines and is determined by a
unique r 3 r unimodular matrix U, so that, for z P Zr, l(z) 5 zU.

Example 4.5. In Example 4.4, let U 5 [2
1

1
1]. Then U is a unimodular

matrix that determines an automorphism z ° l(z) :5 zU of Z2, so (Z2, G)
with G :5 l + g provides an alternative representation for the universal group
of F8. We have

G(0) 5 (0, 0), G(u) 5 (3, 2)

G(a) 5 (1, 0), G(b) 5 (1, 1), G(c) 5 (1, 2)

G(a8) 5 (2, 2), G(b8) 5 (2, 1), G(c8) 5 (2, 0)

In Example 4.5, G maps L into the standard positive cone (Z+)2 in Z2.
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We have not been able to find an example of a finite torsion-free effect
algebra L for which this cannot be done.

By the next theorem, L has a group realization if and only if it has a
group realization within its own universal group.

Theorem 4.6. Let (G, g) be the universal group for L. Then L has a
group realization iff (G, g(L), g(u)) is an effect group and g: L → g(L) is
an effect-algebra isomorphism.

Example 4.7. Applying Theorem 4.6 to Example 4.5, we let F be the
set consisting of the eight vectors

(0, 0), (1, 0), (1, 1), (1, 2), (2, 2), (2, 1), (2, 0), (3,2)

in Z2 and we let w :5 (3, 2). Thus (Z2, F, w) is an effect group and, organizing
F into an effect algebra as in Theorem 3.2, we find that the effect algebra
F8 is isomorphic to F under the mapping G of Example 4.5.

Note that the group realization (Z2, F, w) of F8 in Example 4.7 and the
group realization (Z2, E, v) of F8 in Example 3.4 are not isomorphic. Specifi-
cally, there is a group homomorphism n: Z2 → Z2 given by n(x, y) :5 (2x 2
y, y) for (x, y) P Z2 such that the restriction of n to F is an effect algebra
isomorphism of F into E; however, n: Z2 → Z2 is not a group isomorphism
(it fails to be surjective). Indeed, there is no group isomorphism of Z2 onto
Z2 that carries F onto E.

Suppose the finite effect algebra L has a group realization. By Theorem
4.6, we can identify L with the subset g(L) # G, where G is a finitely
generated Abelian group. Thus L can be specified as a subset of its universal
group G, (G, L, u) is an effect group, and the structure of L can be assessed
as in Theorem 3.2.

5. INTERVAL EFFECT ALGEBRAS

If H is a partially ordered abelian group with positive cone H +, and if
v P H +, then the interval H + [0, v] :5 {h P H.0 # h # v} can be organized
into an effect algebra with unit v as follows: For h, k P H +[0, v], h % k is
defined iff h 1 k # v, in which case h % k :5 h 1 k. We refer to an effect
algebra of the form H +[0, v], or isomorphic to one of this form, as an interval
effect algebra.

If L is an interval effect algebra, we can specify L, up to an isomorphism,
as an interval in a partially ordered Abelian group. Note that every interval
effect algebra admits a group realization, so this method of specification is
a special case of the method presented in the first part of Section 3.
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Example 5.1. Let H 5 Z2 and let H + be the set of all vectors (x, y) P
H such that x, y P Z+ and x 2 y is an even integer. Then H is a partially
ordered Abelian group with positive cone H +. If we let v 5 (4, 2) P H +,
we find that H + [0, v] consists precisely of the eight vectors

(0, 0), (2, 0), (1, 1), (0, 2), (4, 0), (3, 1), (2, 2), (4, 2)

Thus H + [0, v] coincides with E in Example 3.4, so F8 is isomorphic to the
interval effect algebra H +[0, v].

If H is an Abelian group and 0 P M # H, we define ssg(M ) to be the
subsemigroup of H generated by M. Thus ssg(M ) consists of 0 and all finite
sums of the form m1 1 m2 1 . . . 1 mk such that m1, m2, . . . , mk P M. In
Example 5.1, note that H + 5 ssg(E ).

Theorem 5.2. If L is an interval effect algebra and (G, g) is the universal
group of L, then G can be organized into a partially ordered Abelian group
with positive cone G+ :5 ssg(g(L)). Furthermore, g: L → G+[0, g(u)] is an
effect algebras isomorphism.

In Theorem 5.2, we can use the isomorphism g to identify L with the
interval G+[0, g(u)]. Thus, every interval effect algebra L can be realized as
an interval in its own universal group G, partially ordered by G+ :5 ssg(L).
Consequently, we have the following procedure.

Procedure 5.3. To check whether L is an interval effect algebra:

1. Use the total set T of multiplicity vectors to calculate the universal
group (G, g).

2. Verify that (G, g(L), g(u)) is an effect group.
3. Verify that g: L → g(L) is an effect-algebra isomorphism.
4. Calculate G+ :5 ssg(g(L)) in G.
5. Verify that G+ ù (2G+) # [0].
6. Verify that G+[0, g(u)] # g(L).

If the procedure is carried out and all verifications can be made, then
L is an interval effect algebra; otherwise, it is not.

The execution of Procedure 5.3 is a bit simpler if L is known to admit
a group realization (e.g., by Theorem 3.5, if L admits a full set of probability
measures). Indeed, if L admits a group realization, then one can begin by
identifying L with g(L) # G as we do in the next example.

Example 5.4. By Example 5.1 we already know that F8 is an interval
effect algebra. Nonetheless, we carry out Procedure 5.3 for F8 to illustrate
how it works. Using the results of Example 4.5, we identify the effect algebra
F8 with the eight vectors
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0 5 (0, 0), a 5 (1, 0), b 5 (1, 1), c 5 (1, 2)

u 5 (3, 2), a8 5 (2, 2), b8 5 (2, 1), c8 5 (2, 0)

in its universal group G 5 Z2. To calculate G+ 5 ssg(F8), it will suffice
to calculate

G+ 5 ssg({a, b, c,}) 5 {pa 1 qb 1 rc.p, q, r P Z+}

5 {( p 1 q 1 r, q 1 2r).p, q, r P Z+}

Thus, (x, y) P G+ iff ∃p, q, r P Z+ with p 1 q 1 r 5 x and q 1 2r 5 y.
Solving the last two equations for p and q in terms of x, y, and r, we find
that p 5 x 2 y 1 r and q 5 y 2 2r. Thus, we have to solve the system of
linear inequalities x 2 y 1 r $ 0 and y 2 2r $ 0 with the understanding
that x, y, and r are nonnegative integers. The solution is 0 # y # 2x with
max (0, y 2 x) # r # y/2. For instance, a solution is obtained by taking r 5
max(0, y 2 x), provided that 0 # y # 2x. Thus, we have

G+ 5 {(x, y) P Z2.0 # y # 2x}

Evidently, G+ ù (2G+) # {0}, so G 5 Z2 is partially ordered by the cone
G+. Further calculation reveals that both (x, y) and u 2 (x, y) 5 (3 2 x, 2 2
y) belong to G+ iff (x, y) is one of the eight vectors in F8.

In carrying out Procedure 5.3, the problem of representing G+ in some
perspicuous way is often computationally challenging. As in Example 5.4,
it reduces to solving a system of linear inequalities over Z+. The Fourier–
Motzkin algorithm [10] is an efficient method for solving a system of linear
inequalities over the rationals, and in some cases it can be adapted to a
solution over Z+, but the authors are unaware of any general algorithm that
will accomplish this.

In Example 5.4, ssg(L) is described by linear inequalities 0 # x and
x # 2y. The authors do not know of any reasonable necessary or sufficient
conditions for this to be so. Note that H + in Example 5.1 cannot be described
in terms of linear inequalities alone.
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